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Considered are stability problems for systems containing parameters that 
are random functions of time. The statement of the problem generalizes 
a known stability problem of Liapunov [l 1. A description is given of the 
development of the method of Liapunov’s functions for the given problem 
along the lines suggested in 12 1 on the investigation of the problem of 
optimal control in systems with random disturbances.* 

1. Let us consider the system of differential equations of the per- 
turbed motion 

dx /dt = f (x, t, y (t)) (1.1) 

where x is an n-dimensional vector lx,, . . . . x,] of generalized coordi- 

nates; f is a vector-function i fl, . . ., fn I ; the functions fi are con- 
tinuous in all their arguments and satisfy the Lipschitz condition 

/ fi (X”, t, Y (1)) - fi (X’, t, Y (t)) I -S L I/ XN - 2 jj (1.2) 

l While this work was in progress it became known through the survey 
article of Kalman and Bertram [3 ] that problems on the stability of 
systems with random parameters were considered in the article of 

Bertram and Sarachik [ 4 I. This contains definitions of the concept 
of stability in the mean and theorems which correspond to our results 
given in Section 4. We call attention to the fact that A.A. Andronov. 
L.S. Pontriagin, V.V. Stepanov, 1.1. Vorovich and a number of other 
authors have treated stability problems in a manner different from the 
one used here. 

1225 
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for the variables xi in the region 

:)J./, <I H, t 23 l,, (1.3) 

Here, and in the sequel, 11 n 11 = max ((x11 , . . . , 1~~1 ). ‘lhe function 
y(t) describes a random Markov process. 

In this article we shall confine ourselves to the consideration of the 
particular case when y(t) is a homogeneous Markov chain with a finite 
number of states [ 5, pp. 214-231 I, i.e. the function f(y) can take on, at 
every given moment, one value yi out of a finite set Y(yi, . . ., y,); 
hereby, the probability pij ( A t) of the change y i + yj during the tine 
At satisfies the condition 

pij (At) = aijAt -{m o (At) (i # i) (Uij = const) (1.4) 

where the symbol o(At) denotes an infinitesimal of higher order than 
At. Without loss of generality, we shall assume that Yi = i (i = 1, 
. . .) F). “he arguments which follow will remain valid for random func- 

tions y(t) of a more general nature, but the derivation of effective 
criteria of stability becomes quite cumbersome in the general case. 

Furthermore, we shall assume that the following equations are satis- 
fied: 

fi (0, t, Y (t)) = 0 (T&Y, t > 0) (1.5) 

By a solution of the system (1.1) we shall mean an (n + l)-dimensional 
random vector-function i x(x0, to, y,,; t), y(t,, yo; t) 1 whose realizations 

i W)(, 0’ t,, Yoi t), Y(P) (t,, y(J; t) 1 satisfy Equations (1.1). 

‘Ihe definitions which follow generalize known definitions of stability 
and of asymptotic stability in the Liapunov sense [l, pp. 19-20 1. ‘Ihe 

generalization is obtained by means of the natural replacement of the 
usual convergence n + 0, which is the basis of Liapunov’s definition, by 
the convergence in the sense of probability.[l, p. 15 1. 

Definition 1.1. ‘Ihe solution x = 0 of the system (1.1) (non-perturbed 
motion) will be said to be stable in the probability sense if for every 
given c > 0 and p > 0 there exists a 6 > 0 such that for every solution 
of the system (1.1) which at the time t = to satisfies the inequality 

the condition 

Il~0l!=ll~(t0)ll<~ (1.6) 

Pt (II z b%, to, !/a; 9 II < E) > 1 - P (1.7) 

is satisfied for all t 2 to. 

Here, p,(ll x II < E) is the probability that at the time t > t, the 



On the stability of systems with randoa parameters 1227 

following inequality is valid*: 

jlz(x,,,t,,y,;2)[[ < s when YO*EY 

The solution x = 0 of the system (1.1) is said to be stable in the 

probability sense on the time interval T for the given estimate A(E) p) 
(T is a finite number or T= -) if the solutions, with the initial con- 

ditions satisfying (1.6) for all t~[t,,t~+ 2'1 , satisfy the inequality 
(1.71, and if one can show that 6 > A((, p). 

Definition 1.2. The unperturbed motion x = 0 will be called stable in 

the probability sense if it is stable by definition (1.1) and if, further- 

more, for every given 9 > 0 it is true that 

limp1 (ll5Ij < r) = 1 as t--too (~-8) 

for all solutions with the initial conditions 

II 20 II < Ho (1.9) 

where HO is some constant which determines the region of attraction of 
the unperturbed motion. 

'lhe following definition of asymptotic stability may also be of in- 

terest. 

(1.3). 

In it Equations (1.1) need to be defined only in the finite region 

Suppose it is known that any arbitrary solution x(x0, t,, yO; t) with 

IIzII ,< H,, ZJ~EY, t,, > 0, satisfies the condition 

Pt (llz (zoo, to, z/o; 0 II < H) > 1-P ([J) (1.10) 

'Ihen we shall say that the solution x = 0 of the system (1.1) is p(H)- 
asymptotically stable relative to initial disturbances from the region 

(1.9) if, in addition to the conditions of definition (1.11, the follow- 

ing conditions are satisfied: 

limpt (II 5 II < T) > 1 -P W as t-+oo (1.11) 

l Since Equations (1.1) are defined only in a region H which, in general, 
does not coincide with the entire space, one may assume that the 
realizations, for which at some time t = tl(f’) the condition ((z(P) 

(+q( = 6 is satisfied. are considered only on the time interval 

t()< t< tl (P) when 11 x (t>ll < 6. Then, the expression ~~(11 x 11 < 6) can 
be considered as the probability of the existence of the realization 
at the time t. 
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The unperturbed motion x = 0 will be said to be asymptotically stable 
in the probability sense on the time interval T for the given estimates 
p(H), H,(H) and I (q, p) if every solution z(z,,, ta, yO; t) with 11 xl1 < Ha, 
ZJ~ E Y satisfies the conditions 

Here it is natural to assume that 

P>P(H) (0 < ‘G 4 T) (1.14) 

From here on, the time instant t, will be fixed, unless otherwise 
specified. 

2. Since our aim is to formulate criteria analogous to the theorems of 
the second method of Liapunov, let us introduce the definitions which for 
the given case will correspond to the concepts occurring in the use of 
that method. We shall consider the scalar functions V(X, t, y) which are 
defined and continuously differentiable in the region (1.3), and which 
vanish when x = 0. 

Definition 2.2. ‘lhe function V(X, t, y) will be said to be positive- 
definite (negative-definite) if V(X, t, y) > w(n), (V(X, t, y) G - w(x)> 
for all YEY, t > t,, where w(x) is a positive-definite function in the 
sense of Liapunov 11, p. 80 I. 7he function u(x, t, y) will be said to 
be of constant sign if it cannot take on a given sign in the region (1.3). 
In particular, a function u(x, t, y) which is positive-definite according 
to Liapunov for any YE Y, where Y is a finite set, will obviously be 
positive-definite in our sense. If one admits an infinite set of values 
for y, then in order to have positive-definiteness according to Defini- 
tion 2.1 it is sufficient to require that the positive-definiteness in 
the Liapunov sense be uniform in ZJE Y. 

Definition 2.2. The function u(x, t, y) is said to admit an infinite- 
simally small upper limit if there exists a continuous function W(x) 
satisfying th conditions 

2, (T t, Y) 6 If’ (49 W(O)=0 when jj.rl/<H, t\,t,, ~EEY 

Definition 2.3. ‘Ihe function u(x, t, y) is said to admit an infinitely 
large lower limit (see [ 8 1, p. 36) in the region 11 x (I < H, if the func- 
tion w(x) of Definition (2.1) satisfies the condition 
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E$ the symbol M[y?L-(a,, . . . , a,); aI, . . ., an/PI we shall denot.e the 
mathematical expectation of the function $(a,, . . . . aa) of the random 

quantities uI, . . . , a, under the condition 6, where /3 denotes some system 

of equations, inequalities or some other conditions. 

Let us consider the solution Ix(t), y(t)! generated by the initial 
conditions x = 5, y = ‘7 when t = P . In accordance with the introduced 

notation, the expression 

represents the mathematical expectation of the random function 

u (X(E, T, q; t), t, y(r, “I; t)) when t >T 

Definition 2.4. @ the derivative dM[vI/dt of the function v at the 
point x=t, y=q, t = r we shall mean, on the basis of Equations (1.11, 
the limit 

(2.1) 

In particular, if F(x, y, t/f, 7f, r) is the conditional distribution 
function for the solution { x(t), y(tH f6, p. 283 I, then 

+m 
d&l [v] ~ = ]im -L- 

dt t&T+0 t - ‘c 
2) (z, t, Y> Ax?’ (G Y, t/L rl, .t) - 21 (L z, rl) 

I 
(2.2) 

where the integral is taken in the sense of Stieltjes and evaluated with 
respect to all the variables xl, .,., xn, y. Because of conditions (l.l), 
the derivative dM[ v I/dt at the point x, y = j9 t can be evaluated by 
the formula 

qrc [u (XT t, A) - 7J (X, t, i)l (2.3) 

Note. Formula (2.3) shows that for the computation of the derivative 
a[ u]/dt, just as in the case of ordinary equations, it is not necessary 
to integrate Equations (1.1). but it is sufficient to know only the 
right-hand sides of the equations and the probability characteristics of 
the random process y(t). 

3. We shall present some theorems which give sufficient conditions for 
stability and asymptotic stability in the probability sense. 
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Theorem 3.1. If it is possible to find for the differential equations 

(1 .l) a positive-definite function V(X, t, y) whose derivative dM(u)/dt 

is of negative sign, then the solution x = 0 is stable in the probability 

sense. 

Proof. Let the number 6 > 0 and p > 0 be given (obviously, one may 

assume that t < H). Since the function v(x, t, y) is positive-definite, 

there exists a positive number cl such that v(x, t, y) > cl when 

II x II = 69 Y GY, t 3 t, 

Let us construct the random function V(t) which we shall use in the 

proof of the theorem. We shall assume that the realization of the SO~U- 

tions ( rcP)(zO, tO, yO; tOI, ycp) (t,, x0; t)] generates the realization 

V(p)(t) of the random function V(t) with the corresponding probability 

distribution, but only for those values t > t,, for which the following 

inequality is satisfied: 

v (x(p) (%, t,, yo; t)? t, Y(P) (to, Ye/o; t)) < El 

If t(p) is the exact upper boundary of such t. we shall assume that 

there exists no realization of the solutions { zcp) (t), ytp) (t)i when 

t > t(P! while the realization V(p) (t) satisfies the condition V(p) (t) = 

6 1 when t > t (P). 

It is obvious that for the proof of the theorem it is sufficient to 

show that there exists a number 6 > 0 such that if 11 x01( < 6 then 

because 

P (V (4 < El) > 1 - P (3.1) 

P (V (t) < @l) d Pt (llz Cl) II< E) (3.2) 

Let us determine 6 > 0 from the conditions 

supvk to, Y)<PFI when Il~ildS (3.3) 

We shall show that the found number 6 > 0 satisfies the conditions of 

Definition (1.1). Let (x(t), y(t)] be a solution of Equations (1.1) gene- 

rated by the initial conditions { x,,, y0 1. In accordance with our earlier 
stipulations we shall suppose that the realizations ( z(P) (t), y(p) ( t)] 
of this solution are defined only for those values of t for which they 

remain within the region V(X, t, y) < E 1. 

Let us compute the mathematical expectation vt = M[ V(t)] of the 

random function V(t). By the definition of vt we have 

FL := M [v (Z (t), t, y(t)); Z it,, y(t) i 2 (Lo) =y 50, Y (Lo) _ Yol + &lPl (1) (3.4) 
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where p*(t) is the probability of the break in the realization for to d 

r <t. 

By the hypotheses of the theorem, vt > 0. Furthermore, we have 

2’t+_At = M [v (x (t + At), t + At, y (t + At)); x (t + At), y (t +ht) I/ x (to) = I,, 

Y (to) == YOI + PI (1 + At) FI (3.3) 

Making use of the property of the process without after-effect [5. 
p. 86 I, one may write the next equation (taking into account the break 
of the realization ( x(P)(t), y(P) (t)j on the surface u = c 1) 

uttAt == M [M [v (x (t + At), 1 + At, y (t + At)); x (t -t At), y (t + At) i X' (t), f(f)]; 

x0(t), Y'(L) /xo, ~01 + PI (t + At) ~1. 

The symbols x0(t), y’(t) shall stand for fixed values of x(t). y(t). 

Along with the v~+A~, we consider the auxiliary quantity u~+A~ which 
we define by the equation 

ut+At = h [M [V (x* (t + At), t + At, y (t + At)); x* (t -t AL), y (t + At) /z”(t), Y”(t)]; 

X0 (t), Y” (t) / x09 Yo/ol + PI (t ) EI 

where the symbols x*(t) denote the realizations of solutions without 
breaks on the surfaces v = E 1. 

One can verify that u~+A~ - vt+ht > o(At). Hence 

“t+At - ‘t 
At 

< A- M [{M [V (A* (1 + AL), t + At, y(t + At)); x* (t + Al), 

o(W 
y (t + Al) i z (th Y (t)l -- t'(x Cl), t, y(t)),; x (Q Y(L) ix07 YOH T 

I I 

Taking the limit* 

Since the function vt is continuous, the inequality (3.4) may be in- 
tegrated. Hence. we have the inequality 

l The existence of the transformation (3.6) and, in particular, the in- 
terchange of the order of taking the limit and of evaluating the 
mathematical expectation require justification. We note that in the 
case under consideration this justification does not cause diffi- 
culties because of the uniform convergence of the right-hand side of 
(1.1) to a limit as t + 7 + 0. 
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Next, let us assume that the theorem is false. Hence, one can find an 
instant of time t = ‘f,, > to such that p(V(t) < 6 1) < 1 - p. This means 
that up to the time t = T the probability of the break-off of the real- 
ization ( z(P) (t), y(P) (t)) is greater or equal to p. But in such a case 
it is obvious that the next inequality must hold: 

VT 3 PFl (3.8) 

The inequalities (3.3), (3.7) and (3.8) contradict each other. This 
contradiction establishes the theorem. 

Note. Condition (3.3) makes it possible to find a 6 > 0 for given E 
and p by a procedure used in Liapunov’s method and described by Chetaev 

[7, P. 95 1. 

Suppose, for example, that the functions v(x, y) are quadratic forms: 

n 

V (2, i) = 2 bik(‘)Z,Zk (j = I,..., r) (3.9) 

Then 
i. k=l 

inf L’ = ;i; p1 (]‘) e2 when 11 z 11 = E, sup v = ;a; pl (i) 6” when 11 z Ij < 6 

where p,(j) are the roots of the secular f?qllStiOUS 11 bik'i' - p'ikl( = 0. 

Therefore, it is sufficient to determine 6 by the conditions 

’ < e VP bin 1 iJmax (3.10) 

This inequality makes it possible to verify the stability on the time 
interval T for a given estimate A (c, p). 

Theorem 3.2. If for Equations (1.1) there exists a positive-definite 
function v(n, t, y) which admits an infinitesimally small upper limit and 

whose derivative, in view of (l.l), is a negative-definite function in 

the region (1.31, then for every number p(H) < 1 there exists a number H, 
such that the solution r = 0 of the system (1.1) is p(H) - asymptotically 
stable relative to the initial disturbances from the region (1.9). 

Proof. Let the number p(H) < 1 be given. Under the conditions of 
Theorem (3.2) we have stability in the probability sense. Hence, for some 

fixed number E > 0, there exists a number 6 > 0 such that the inequality 

Pt (II z(t) II < E) > 4 - P (IJ) 

is valid for solutions with the initial conditions 11 x,, (1 < 6. 

(3.11) 

Let us choose the number H,, = 6 and show that it satisfies the condi- 

tions of our theorem. For this purpose we take arbitrary numbers 
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7 > 0 (q < 6) and p1 > 0. With these numbers we determine the number q1 
so that the next condition be satisfied: 

(3.12) 

[sup u (r, t, Y) when II z II d qll < [i P I inf v (2, t, ?/) when11 2 I[ 3 VP V (2, t, Y)<Q I 

By repeating, with slight modifications, the argument used in the 

proof of Theorem 3.1, we can verify that 

P, (II x lx (G t, y(t); r) II < q) > 1-i p1 (3.13) 

when r 2 t for all solutions with the initial conditions 

x = x (t); Y = Y (t) (II 2 (4 II d VI 

Let us show that one can find a sufficiently large value t = T such 
that the following condition holds: 

PTU x II < VI > 1 - f PI -P Vi) (3.14) 

Indeed. if for all t > to it were true that 

Pf (II z II <VI e 1 - lizP1 -P (f4, 

then it would follow that pt(vl < 11 x 11 , u < E 1) z pl/2. 

But then it is easily seen that for all t > to 

dvt 
dt 6- f pla - a = inf 

This, however, is impossible because vt > 0. Thus, from t’he inequal- 
ities (3.11). (3.12) and (3.14) it follows that for any given number p1 

there exists a T > t,, such that for all t > T the next inequality holds: 

P,(II~//<rl)>l-P(~)-~Pl-~pl 

This proves the theorem. 

Note 3.1. If H= 00, and if the function V(X, t, y) is defined in the 
entire space and admits an infinitely large lower limit (see Definition 
2.3), while its derivative is a negative-definite function’, then the 

solution of the system (1.1) is asymptotically stable in the probability 
sense under disturbances from any bounded region ifs. 

l Everywhere in the sequel, when H = 00, it is assumed that all (almost 
all) realizations can be continued when t + 00. See [ 9, pp. 16-19 1. 
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Note 3.2. From the proof of Theorem 3.2 it can be seen how one can 
verify asymptotic stability in the probability sense on a given time in- 
terval for given estimates. 

4. Let us continue the consideration of the case when H= 00. In par- 
ticular, this can always be assumed to be the case for the linear system 

dx/dt = A(t, y)x (4-l) 

where n is an n-dimensional vector and A(t, y) is the matrix of the co- 
efficients &ik( t, y). 

In the sequel, the symbol 11 n /I 2 will stand for the expression 
\/ (Xl2 + . . . + xn2). Everything that has been presented earlier in this 
work is valid, obviously, for this norm. 

Definition 4.1. A solution of the system (1.1) will be said to be 
stable (in the mean square) 15, p. 16 1 if for every number 6 > 0 there 
exists a number 6 > 0, such that every solution of the system (1.11, with 
initial conditions satisfying the inequality 

II x0 II2 = II x (to) jl? < 6 (4.2) 

will satisfy the condition 

M [IIz@,, to, yo; t)[lz2; x (0 / 50, ~01 < 8 (4.3) 

for all t > tO, y,E:Y. 

Definition 4.2. A solution x = 0 of the system (1.1) will be said to 
be asymptotically stable in the mean if it is stable in the mean, and if, 
in addition, it is true that for all solutions with the initial condi- 
tions II x 11 2 G H, the following relation holds: 

lim M [I) 5 (t) lj22] = 0 when -+ 00 (4.4) 

We shall say in this case that the region Ha of the space i xi~ lies in 
the region of attraction of the point n = 0. 

Note. Note that under the stated assumptions stability (asymptotic 
stability) in the mean of the system (1.1) is a sufficient condition for 
stability (asymptotic stability) in the probability sense. 

Definition 4.3. A solution x = 0 of the system (1.1) will be said to 
be exponentially stable in the mean if for arbitrary initial conditions 
from the region (1.3) there exist numbers B and a such that for all 
t > t,, the following inequality holds: 
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M IlIz (t) 112; J: W / ~0, 901 < B 11x0 IIs2 =CP (- a (t - to)) 

Theorem 4.1. If, for the system (l.l), there exists a function 
V(X, t, y) satisfying the conditions 

(4.5) 

(4.6) 

where cl, c2, and c3 are positive constants, then the solution x = 0 of 

Equations (1.1) will be exponentially stable in the mean. 

Proof. Let us consider a solution of the system (1.1) with the initial 

conditions ( zo, y,,]. This solution determines a random function of time 

17 (t) = 7J (z (% to, ?/o; t), 1, Y (to, yo; t)) 

For the mathematical expectation vt of the function, we will have the 

following inequality: 

4I [I[ z (t) 1122; z (t) / 20, Yol < Z“t =G CzM Ill % Cl) Ilr2; 22 (t) / ZOI Yol 

2 d - C&f [II z (t) 112; z (t) i zo7 Yol (4.7) 

From these conditions we obtain by the usual method (see, for example 
[ 8 I, p. 70) the inequality 

Iv1 [II z (L) /)A 22 (t) ! x0, Yol < ff II 20 112 exp (- -2. (t - toI) 

which proves the theorem. 

(4.8) 

We note that in the given case there is obtained stability “in the 
large”, i.e. the region of attraction,in the mean is the entire space. 

Theorem 4.2. If the solution x = 0 of Equations (1.1) is exponentially 
stable in the mean, then in the region t > t,,, YEY there exists a 
function v(z, t, y) which satisfies conditions (4.6). 

Proof. Suppose there exist constants B and a such that for any given 
values x0 and t,, > 0 the following condition is satisfied: 

h4 Ill J: (l) 1122; z (Q / x01 YOI e B II% 112 CXP (- cf (1 - to)) (4.9) 

Let us consider the function v(x, t, y): 

M 

2.(E, t, q)= M[Ilx(E, t, q; 0/R r(t)/“(t)=& ~(t)=rlldt 
s 

(4.10) 

t 

We shall show that this function satisfies the conditions of the 
theorem. Indeed, by (4.9) we have 
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On the other hand, for every realization of a solution of the system 
(1.1) we have the estimate [9, p. 23 1 

II dP) (20, to. Yoi t) II 22 >, )I 20 112’3 cxp (- 2rzL (t - to)) 

(L is the Lipschitz constant). From this it follows that 

M [I/x (t) )I& x (t) / 20, yol 2 Jj xo 112 exp (- 2d (t - to)) 

But then we notice that 
00 

~(5, t, q)= 
s 

MIljz(g, t, q; r)J/z*; r(t)/E, nldr>, 
t 

Thus, the first of conditions (4.6) is satisfied. Let us evaluate 
dM[v]/dt. By Definition 2.4 we have 

d” [VI _ liln __ -- 
dc 

-!- {M [zi(x (t + At), t + At, y (t _1- At)); z (t + At), y (t mt- At), 
ilt++o At 

jr (1) =:z j, y (t) = q] - v (5, t, q)} 

Substituting for u(x, t, y) its expression from (2.10), we obtain 

dM [‘I ._ lim _1_ A$4 - -- 

dt At++o At 1 [S 
bl [\I z (x (t + At), t -i_ At, y(t + At); .t) jj2; z(t) 

t+At 

/x(t+At), y(t+At)]dc x(tj-At), y(t+At),:z(t), y(t) 
1 

-- 

‘x 

--\M[lix(z(t), t, y(t); T)~/z~; x(r)/x(t), y(t)ldt 

t 

Furthermore 

co 

’ AI I\ M[I/s(xjt+At), t$At,y(t+At);Qjs2; x(z)!1:(t+At), y(t+At)]d_;; 

&At 
co 

z Ct + At), y (t + At) / x(t), y (1) 
1 s 

= M[l/z(x(t), t, y(t); ‘t)jJP; r(t)/x(t), y(t)] dz 

t+At 
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Thus, we obtain 
co 

M ill X 12. (t), t, y(t); Z) /lz2; X(t) ix tt)3 Y Ct)l Ok-- 

t+At 

This establishes the theorem. 

For the linear system (4.1) with random variables the next theorem is 
true. It is an adaptation of a theorem of Malkin [lo, p. 313 1 to the 
case of stability in the mean. 

Theorem 4.3. If the solution n = 0 of the system (4.1) is exponential- 
ly stable in the mean, then for any given positive-definite form m(r,t,y) 
of the variables x1, . . . . x, whose coefficients cik(t, y), for all ~/EY, 
are bounded and continuous functions of time, there exists a positive- 
definite form v(x, t, y) of the same order which satisfies conditions 

(4.6), and is such that 

dM [II] / dt = -w (z, t, y) (4.12) 

The proof of this theorem is a repetition of the arguments used in the 
proof of Theorem 4.2. One needs only to select for the function v the 
function 

00 

D(E, t, n) = 
s 

M[w(x(E, t, n; z), r, Y(t, 7; z)), x(z), Y(Q/E* rlldr (4.13) 

t 

Hereby, one should verify that the function v([. t. 7) is a form in 
the variables x1, . . ., x,. This verification can be carried out in the 
same way as was done in the cited theorem of Malkin [ 10, pp. 313-316 I, 
since the random solutions of linear equations possess all the properties 
which were used in [ 10 I. 

5. Let us consider a system of equations of the form 

dx / dt = A (t, y) x + R (x, t, y) (5.1) 

where the elements of the matrix A(t, y) are continuous bounded functions 
of time for every ~GY. Relative to the function Ri(x, t, y), we shall 
assume that in the region (1.3) the following condition holds for every 
YEY : 

IRi(T t, Y>l<~Il~B22 (y = const > 0) (5.2) 

Alongside with the system (5.1) we consider the system of the first 
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approximation 

&Xl& = A(t, $)I” (5.3) 

We then have the next theorem which is analogous to a theorem on sta- 
bility with respect to the first approximation [ 10, pp. 365-366 1. 

Theorem 5.1. If the solution x = 0 of the system (5.3) is exponential- 
ly stable in the mean, then the corresponding solution of the system 
(5.1) is stable in the probability sense, and, furthermore, for every 
given p(H) the solution x = 0 will be p(H) - asymptotically stable for 
every choice of the function R(x, t, y) satisfying conditions (5.2) in 
the region (1.3) provided the constant y is small enough. 

Proof. By the conditions of the theorem, there exists a function 

U(X. t, y) satisfying, because of (5.3). the condition (4.6). 

We shall use the symbols (dM[ v l/dtjS _1 and (dM[ v 1 /dt) 5 3 to indicate 
the derivatives of the function U(X, t, y) in view of the systems (5.1) 
and (5.3), respectively. 

Then, in accordance with Formula (2.3), we shall have at the point 
x, t, j the following relation: 

Taking into account the fact that the funct 
chosen as a form in the variables xl, . . . . x,, 
tions (4.6) and (5.2), we obtain 

I on V(X, t, y) can be 
and making use of condi- 

f - c3 II 22 112 + nrP II x 1123 
i 

'p= sup 

If y is sufficiently small, then we obtain, 
condition 

in view of (5.5). the next 

Cd” [v1l dl 
< - c1 II x I/? in the region Ijzlj2 < If (p > 0) 

5.1 

Thus, the function U(X, t, y) satisfies for the system (5.2) all the 
conditions of Theorem 3.2. 

Note. If the estimate (5.2) is valid in the region H = =, then the ex- 
ponential stability in the mean of the system of the first approximation 
(5.3) will imply the asymptotic stability in the probability sense for the 
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solution x = 0 of the system (5.1). 

6. Let us now consider the stationary linear system 

dx/dt = A(y)s (6.1) 

Theorem 6.1. If the solution x = 0 of the system (6.1) is asymptotic- 

ally stable in the mean, then for every given positive-definite form 

I(X, y) there exists one, and only one, form u(n, y) of the same order 

satisfying the condition 

dM [u]/dt = -w(x, y) (6.2) 

Furthermore, this form will, of necessity, be positive-definite. 

Proof. Because of Theorem 4.3, it is sufficient to show that if the 
solution L = 0 of the system (6.1) is asymptotically stable in the mean, 
then it is exponentially stable in the mean. Let us show this. 

In the first place, by the hypotheses of the theorem, the solution 
x = 0 is stable in the mean. Therefore, having been given a number 6 > 0. 
let us determine a 6 > 0 such that the following condition is satisfied: 

M III x (t) II& x (t) / x (to) = x0, y (to) = Yol < e, mxlf II x0 II d 6 (6.3) 

This stability will be uniform with respect to to > 0 and y. 6 Y, be- 
cause the system is stationary and the set of values of y is finite. Since 
the system (6.1) is linear, the asymptotic stability in the mean of the 
unperturbed motion is uniform with respect to x,,. From this it follows, 
in view of the linearity of the equations, that one can find a T> 0 for 
which the following condition holds: 

M [II 5 (50, to> YO; to + T) lb2; z (to + T) / sovol d f II xo ll22 

for every set of values x0, y,,, yo~Y . The computations yield 

(6.4) 

M t/i 2 (501 to, Yoi to + 277 112; x (to + 2T) / 507 Yol = 

= M Pf II/r ( (~0, to, YO; to + T), to + T, Y (to, YO; to + 7’); to $- 2T) /IL? x (to + 2T) / 

/ 5 (to + 0 Y (to + VI; z (to + T), Y (to + T) / xo, yol < (6.5) 

< l/zM II/x (~09 to, YO; to + T) II& x (to + T) / ~0, YUI <‘/,jlxo 1122 

Continuing the argument by induction, one can obtain for every given 
positive integer a the condition 

M Ill x (~0, to, YO; to + mT)112; x (to + W / 20, yol < + (1x0112 ((3.6) 
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Suppose t = to + nT + 7, where T < T. Then, making use of the relation 

[9, P. 23 1 

we obtain 

Setting a = l/T In 2, B = 2 exp(2nLT), we find that 

This completes the proof. 

Theorem (6.1) yields a number of algebraic criteria (depending on the 
choice of the function w(n, y)) for asymptotic stability in the mean for 
the system (6.1). Indeed, let us take any positive-definite quadratic 
form I(X, y). Let us number its coefficients c,(y), . . . , c,(y) so that 
N = n(n + 1)/Z. 

If the solution x = 0 of the system (6.1) is asymptotically stable in 
the mean, then, by Theorem 6.1, there exists a positive-definite quadratic 
form tl(x, y) which satisfies condition (6.2). Let us denote the coeffi- 
cients of this form by bl(y), . . . , b&y) (y = 1, . . . , F). 

For the determination of these coefficients we obtain a system of Nr 
linear nonh~ogeneous equations 

‘Ihe coefficients ‘i,(j), . . . . AiN are constants that are linear 

combinations of the coefficients oik and of the elements of the matrix 

A(j). 

These equations are obtained by equating the coefficients of similar 
terms in the equations 

Thus, for the asymptotic stability in the mean of the system (6.1) it 
is necessary and sufficient that the forms v(x, j) (j= 1, . . . , F), with 
coefficients determined by Equations (6.9), be positive-definite. Making 
use of Sylvester’s criterion for each of these forms, we obtain Nr 
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algebraic inequalities which guarantee the asymptotic stability in the 
mean of the system (6.1). 

As an example, let us consider the equation 

dx ; dt = a (y) x 

Here, a(y) is a random function which can take on two values al and a2, 

whereby the probability p . .( A t) of the change of values ei + a. is given 
by Formula (1.4) (i, j = l”f 2). Applying the presented method ti the 
given equation, we obtain the system of inequalities 

fllaz - + (alzaa + anlal) > 0, al < -: (aI2 + a& 02 < f (a12 t c(z1) 1 

These inequalities determine the region of asymptotic stability in the 
mean. 

The following assertions are consequences of Theorems 5.1 and 6.1. 

Theorem 6.2. If the solution x = 0 of the system (6.1) is asymptotic- 
ally stable in the mean, then the corresponding solution of the equations 

dx/dt = A(y)x-tR(x, t, y) (6.11) 

will be p(H) - asymptotically stable if condition (5.2) is satisfied and 
if the constant y is small enough. 

7. In this section we shall consider the problem of stability under 
random constantly-acting disturbances. Let the equation of the perturbed 
motion have the form 

dx/dt = A(y)x+q(t) (7.1) 

Here, for fixed YE Y , the matrix A has constant coefficients a 
c is an n-dimensional vector with constant components ci; 7(t) is a 

ii(Y); 

random function which describes the constantly-acting disturbances. We 
shall restrict ourselves here to random disturbances l?(t) of a particular 

type- 

Let us assume that the function n(t) has the form [ 11, p. 133 1 

(7.2) 

Here tk is a random quantity having a Poisson distribution along the 
t-axis with mean frequency X, i.e. 

p, (T) = ‘% exp (- hT) 
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where p,(T) is the probability that on the time interval of length ‘I’> 0 
there lie m values sk; ak are mutually independent, and also independent 

of Q, random variables with the same distribution function F(a), and 
with n&z) = 0. The symbol NtI in (7.2) denotes the S-function. In other 
words, the random disturbances under consideration are a random selection 

of impulses of a random quantity. We shall make use of the notation v = 
xM( a21. 

Definition 7+1. An unperturbed motion will be said to be stable in the 

probability sense (or in probability) under constantly-acting disturbances 

by Equations (7.1) if, for every given pair of numbers t: > 0 and p >, 
there &ist two other numbers 8, > 0 and 8, > 0 such that for every solu- 

tion Ix(f), y(t)) of Equations (7.1) with the initial conditions 

!iGj/2<4r y0EEy 

the following condition holds: 

This definition carresponds in our case to the concept of stability 
under constantly-acting disturbances for ordinary differential equations 
!I 10, pp. 293-294 1. We shall h s ow that here, just as in the case of 
ordinary differential equations, one can make use of Liapunov’s function. 

Let us suppose that in the absence of random disturbances the linear 
system of equations 

ds/dt = A (y)x (7.3) 

is asymptotically stable in the mean. Then, according to the results of 

Section 6, there exists a positive-definite quadratic form 

u (x, y) 1 i hi& (9) xixfi 
i, Ii=1 

whose derivative, by the system f7.3), satisfies the condition 

Let us evaluate the derivative of this function by the use of the com- 
plete system of equations f7.1). We obtain 
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where, for the sake of brevity, the solutions of the systems (7.1) and 

(7.3) are denoted by x ‘l’(t), and zC3)(t), respectively. 

The deviations Ax, = xi(‘)(t + At) - riC3)(t + At) are caused by the 
disturbances q(t). We note that in the computation of the second term on 
the right-hand side of Equation (7.4) one may assume that the quantity 
y(t), for t < T < t + At, is constant, because the probable change of 
y(t) in this term is an infinitesimal of order higher than At. Hence, 
one may write 

‘Ihe deviation Ani(t + At) should be computed by Cauchy’s formula for 
the solution of a nonhomogeneous linear system. Writing this formula in 
vector notation, we have 

t+At 

AZ (t + At) = \ G (t) G-l (z) cq (T) cZz (7.5) 
1 

where G(t) is the fundamental matrix of the solutions of the system (7.3) 
(for a constant value y(t) = y). 

Since M( v ) = 0, we have for our case 

After substituting 
tion (7.5) we obtain 

Therefore 

T(t) from (7.2) into the right-hand side of E+a- 

Axi (t + At) = 2 UkCi + 0 (At) 
k 

= bij (y) M {a”} i m YeXP (-- hAt)+o (At) = bij (y) cicjRI {a”} hAt + C, (At) . 

Hence 

M[-+i ] 
axiaxj AxiAxj = 5 bij (y) cicjVAt + 0 (At) 

i. j=l i.j=l 
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(?F>,,, = -i Xf+V E bij(y)C'Ct 1 1 (7.6) 
i=l i. j=l 

Next, let the numbers t > 0 and p > 0 be given. We choose a number 
c 1 > 0 such that the set of points U(X, y) < l 1 will lie inside the 

region (1 x \I 2 < E for all y E I’ . For the number E 1 we select a 6, > 0 
such that the surfaces u(x, y) = c 1p lie outside the sphere 11 n 112 G 6, 
for all YCZ;-Y. Let x0 be some initial point satisfying the condition 

II xi) II 2 < 6,. We shall show that the solution i x(x0, to, yo; t), y(tO, 
yo; t)] satisfies the condition 

Pi (II 2 (t) II2 < 8) > 1 - P (7.7) 

provided the quantity v is smell enough. 

Let us select for this purpose a quantity v > 0 SO small that the de- 
rivative (7.6) will be negative in the region 6, < II z 11 2 < t . Let us 
construct for our proof a random function Y(t) of time, just as was done 
in the proof of ‘Ibeorem 3 .l. 

One can show that for the mathematical expectation trt of the random 
function V(t) the following inequality is valid: 

c1 <r (XII, Yo) < Pa1 when t >, to (7.8) 

Proof. Let the symbol p(t) stand for the probability that II x 11 2G 6,. 
We have 

it < M 1~ (x (t), Y (t)); z (119 Y (4 / II x(t) II? > 611 + 

i- M Iv (z (iI. Y (L)); x (t)* y (t) / II TJ (t) Ill d 811 + Pl (1) El (7.9) 

where PI(t) is the probability of the break-off of the realization. 

The second term in (7.9) satisfies, obviously, the inequality 

M Iv (x (t), y (t)); z (t), 2/(t) / 111: (t) II2 < 611 < P (t)m 

For the proof of the inequality (7.8) it is, therefore, sufficient to 
verify that the first and third terms of (7.9) are smaller than 

(1 - p(t)Pfl. Let us show this. 

* We take advantage of this opportunity to point out that in 12. Sec- 
tion 5 1, in the computation of the derivative dM [ VI / dt the second 
term was omitted. Therefore, the deduction that the superposition of 
a random noise would not change the law of the optimal control [2, 
Section 5 1 is false. 
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Suppose that at some moment of time t the inequality 

M Iv (I (t), Y (9); x (t), Y (t) / II x (t) 112 > 611 + PI (4 &I d (1 - P (tf) P&I 

is satisfied (this inequality certainly holds when t = t,). Then, if A t 
is sufficiently small we have 

M 1~ (r (t + At), Y (t + At)); r (t + At), y (t + At) / IIT (t + At) 112 > 611 + 
+ PI (t + At) ~1 d &I 1~ (x* (t + At), y (t + At)); x*(t+At), y(~+A~)lJJx(~)lja>~~l- 

- AP (t) PI + IO (AtI I 

Here, as in the proof of Theorem 3.1, the symbols X* denote realiza- 
tions of solutions of the system (7.1) under the assumption that on the 
tine interval t < r < t + At the above-stated rule on their break-off on 
the surfaces v = ~1 does not apply. 

Because (dM[ VI /dt), .1 < 0 in the region 11 x (t) [I 2 > 61, the first 
term of the right-hand side of the last inequality is smaller than 

and hence, for At sufficiently small 

M [v lx (t + At), Y (t + At)); cc (t + At), y (t + At) / JI z (t + At) IIP > 611 f 
PI (t + At) .% < (1- IJ (t)) PI - AP (t) PI < (1 - P (t’+ AtI) PI 

which establishes the inequality (7.8). 

From the inequality (7.8) we conclude that in case of asymptotic 
stability in the mean of the linear system there is stability in the 
probability sense under constantly-acting random disturbances. 
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